On the conjugate graphs of finite p-groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugate Graphs of Finite Groups

In this paper we introduce the conjugate graph ΓG associated to a nonabelian group G with vertex set G\Z(G) such that two distinct vertices join by an edge if they are conjugate. We show if ΓG ∼= ΓS , where S is a finite nonabelian simple group which satisfy Thompson’s conjecture, then G ∼= S. Further, if central factors of two nonabelian groups H and G are isomorphic and |Z(G)| = |Z(H)|, then ...

متن کامل

On Laplacian energy of non-commuting graphs of finite groups

‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..

متن کامل

conjugate factorizations of finite groups

in this paper we illustrate recent results about factorizations of finite groups into conjugate subgroups. the illustrated results are joint works with john cannon, dan levy, attila mar'oti and iulian i. simion.

متن کامل

ON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS

Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...

متن کامل

COMPUTATIONAL RESULTS ON FINITE P-GROUPS OF EXPONENT P2

The Fibonacci lengths of the finite p-groups have been studied by R. Dikici and co-authors since 1992. All of the considered groups are of exponent p, and the lengths depend on the celebrated Wall number k(p). The study of p-groups of nilpotency class 3 and exponent p has been done in 2004 by R. Dikici as well. In this paper we study all of the p-groups of nilpotency class 3 and exponent p2. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Malaysian Journal of Fundamental and Applied Sciences

سال: 2017

ISSN: 2289-599X,2289-5981

DOI: 10.11113/mjfas.v13n2.557